Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sai-Rong Fan and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in main residue
R factor $=0.057$
$w R$ factor $=0.124$
Data-to-parameter ratio $=10.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Aqua(1,10-phenanthroline)[1,1,1-trifluoro-3-(2-thenoyl)acetonato]copper(II) (1,10-phen-anthroline)(5-sulfonatosalicylato)[1,1,1-trifluoro-3-(2-thenoyl)acetonato]cuprate(II)

The structure of the title complex is built up from a $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$cation and a $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}\right)\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]^{-}$anion. Both the cation and anion contain $\mathrm{Cu}^{\mathrm{II}}$ atoms having a squarepyramidal geometry. Hydrogen bonds between cations and anions generate a one-dimensional chain and stabilize the crystal packing.

Comment

The study of cation-anion 5 -sulfosalicylate metal complexes has recently been greatly developed in our laboratory. These compounds exhibit interesting assembly topologies (Chen et al., 2005; Fan \& Zhu, 2005a,b; Fan et al., 2005) in complexes containing 5 -sulfosalicylate as the only anionic ligand. Here, we present the results of a combination of 5-sulfosalicylic acid and 2-thenoyltrifluoroacetone, giving the title cation-anion complex containing two different anionic ligands, (I).

(I)

In the structure of (I), both cation and anion contain a $\mathrm{Cu}^{\mathrm{II}}$ atom with a square-pyramidal geometry, in which the basal plane is defined by two N atoms from one 1,10-phenanthroline ligand and two O atoms from one 2-thenoyltrifluoroacetonate (ttf) ligand. The apical position in the cation is occupied by the water molecule, whereas in the anion it is occupied by the dianionic 5 -sulfosalicylate ligand (Figs. 1 and 2). In both species, the $\mathrm{Cu}-\mathrm{N}$ bond lengths are close to those of other carboxylate copper complexes containing N donor ligands (Lemoine et al., 2002; Zhu \& Kitagawa, 2002), and the Cu $\mathrm{O}(\mathrm{ttf})$ bond lengths are also similar to those of ttf -copper complexes (Yang et al., 2000, 2001).

It is worth noting that the coordinated water molecule in the cation forms hydrogen bonds with the phenolic atom O3 (symmetry code: $x,-1+y, z$) and the sulfonate atom O6 (symmetry code: $-1+x,-1+y, z$) from two adjacent anions, thereby creating a hydrogen-bonded chain (Fig. 3 and Table 1).

Figure 1
A view of the cation of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The minor disorder component of the CF_{3} group is not shown.

Experimental

A solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.051 \mathrm{~g}, 0.20 \mathrm{mmol})$ and 5 -sulfosalicylic acid dihydrate $(0.051 \mathrm{~g}, 0.20 \mathrm{mmol})$ in water $(15 \mathrm{ml})$ was added to a solution of 2-thenoyltrifluoroacetone ($0.044 \mathrm{~g}, 0.16 \mathrm{mmol}$) and $1,10-$ phenanthroline $(0.040 \mathrm{~g}, 0.20 \mathrm{mmol})$ in N, N-dimethylformamide $(10 \mathrm{ml})$ with stirring. The resulting solution was then set aside and allowed to evaporate. After three weeks, green block-shaped crystals of (I) were obtained and collected by suction filtration.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-$
$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}\right)\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\right.$ -
$\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$

$M_{r}=1164.01$

Monoclinic, $P 2_{1} / c$
$a=10.1963$ (5) \AA
$b=14.0035$ (7) \AA
$c=32.1357$ (17) \AA
$\beta=98.508$ (1) ${ }^{\circ}$
$V=4538.0$ (4) \AA^{3}

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.826, T_{\text {max }}=0.912$
23617 measured reflections

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.704 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 4606
reflections
$\theta=2.4-25.5^{\circ}$
$\mu=1.17 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, green
$0.17 \times 0.10 \times 0.08 \mathrm{~mm}$

> 7984 independent reflections
> 6409 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.041$
> $\theta_{\max }=25.0^{\circ}$
> $h=-11 \rightarrow 12$
> $k=-16 \rightarrow 16$
> $l=-35 \rightarrow 38$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.124$
$S=1.13$
7984 reflections
746 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
A view of the anion of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The minor disorder components of the sulfonate and CF_{3} groups are not shown.

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2$	0.82	1.73	2.466 (4)	148
$\mathrm{O} 11-\mathrm{H} 11 A \cdots \mathrm{O}^{\text {i }}$	0.84 (1)	2.11 (1)	2.947 (4)	172 (4)
$\mathrm{O} 11-\mathrm{H} 11 B \cdots \mathrm{O} 6^{\text {, }{ }^{\text {ii }}}$	0.85 (1)	1.87 (2)	2.695 (16)	166 (4)
$\mathrm{O} 11-\mathrm{H} 11 B \cdots \mathrm{O}^{\text {ii }}$	0.85 (1)	1.89 (2)	2.735 (15)	177 (5)

Symmetry codes: (i) $x, y-1, z$; (ii) $x-1, y-1, z$.
The H atoms attached to C or O (hydroxyl) atoms were placed in idealized positions and refined as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{O}-\mathrm{H}=0.85 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$. Water H atoms were located in difference Fourier maps and were refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ restraints of 0.85 (1) and 1.39 (2) \AA,

Figure 3
A view of the hydrogen-bonding chain of (I). Hydrogen bonds are drawn as dashed lines. H atoms, 1,10 -phenanthroline ligands, and minor disorder components have been omitted for clarity.

metal-organic papers

respectively, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The sulfonate group and the CF_{3} groups are disordered over two positions each and their occupancies are 0.513 (14):0.487 (14) for atoms $\mathrm{O} 4 / \mathrm{O} 5 / \mathrm{O} 6$ and $\mathrm{O}^{\prime} /$ $\mathrm{O}^{\prime} / \mathrm{O}^{\prime}, 0.57$ (2):0.43 (2) for atoms $\mathrm{F} 1 / \mathrm{F} 2 / \mathrm{F} 3$ and $\mathrm{F}^{\prime} / \mathrm{F} 2^{\prime} / \mathrm{F} 3^{\prime}$, and 0.584 (19):0.416 (19) for atoms F4/F5/F6 and $\mathrm{F} 4^{\prime} / \mathrm{F} 5^{\prime} / \mathrm{F} 6^{\prime}$, respectively. The anisotropic displacement parameters for these disordered groups were refined using similarity restraints.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the National Natural Science Foundation of China (grant No. 50073019).

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02a) and SMART (Version 5.618). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, J.-M., Fan, S.-R. \& Zhu, L.-G. (2005). Acta Cryst. E61, m1724-m1726.
Fan, S.-R., Cai, G.-Q., Zhu, L.-G. \& Xiao, H.-P. (2005). Acta Cryst. C61, m177m179.
Fan, S.-R. \& Zhu, L -G. (2005a). Chin. J. Chem . 23, 1292-1296.
Fan, S -R. \& Zhu, L.-G. (2005b). Acta Cryst. E61, m2187-m2189.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Lemoine, P., Viossat, B., Morgant, G., Greenaway, F. T., Tomas, A., Dung, N. \& Sorenson, J. R. J. (2002). J. Inorg. Biochem. 89, 18-28.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yang, R.-N., Wang, D.-M., Li, C.-Y., Liu, Y.-F. \& Jin, D.-M. (2001). Chin. J. Inorg. Chem. 17, 209-212.
Yang, R.-N., Wang, D.-M., Li, T.-X., Hu, X.-Y. \& Jin, D.-M. (2000). Chem. J. Internet, 2, 8-11.
Zhu, L.-G. \& Kitagawa, S. (2002). Inorg. Chem. Commun. 5, 358-360.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

